首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3401篇
  免费   168篇
  国内免费   234篇
电工技术   68篇
技术理论   1篇
综合类   142篇
化学工业   989篇
金属工艺   602篇
机械仪表   154篇
建筑科学   40篇
矿业工程   57篇
能源动力   164篇
轻工业   117篇
水利工程   5篇
石油天然气   61篇
武器工业   13篇
无线电   318篇
一般工业技术   851篇
冶金工业   101篇
原子能技术   93篇
自动化技术   27篇
  2024年   3篇
  2023年   48篇
  2022年   58篇
  2021年   102篇
  2020年   104篇
  2019年   113篇
  2018年   114篇
  2017年   105篇
  2016年   121篇
  2015年   105篇
  2014年   171篇
  2013年   235篇
  2012年   172篇
  2011年   312篇
  2010年   255篇
  2009年   245篇
  2008年   229篇
  2007年   269篇
  2006年   192篇
  2005年   152篇
  2004年   129篇
  2003年   101篇
  2002年   89篇
  2001年   88篇
  2000年   60篇
  1999年   38篇
  1998年   38篇
  1997年   33篇
  1996年   31篇
  1995年   17篇
  1994年   16篇
  1993年   21篇
  1992年   14篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1982年   1篇
  1981年   2篇
  1959年   3篇
排序方式: 共有3803条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2020,46(2):1750-1759
Cobalt (Co) doped MgZn spinel nanoferrites with composition Mg0.5Zn0.5Cox Fe2-xO4 at x = 0.0, 0.10, 0.20, 0.30, 0.40, 0.50 were prepared using sol-gel auto ignition method. The characterizations techniques such as FESEM, FTIR, XRD and VSM were used to determine the morphology, force constants, phase, structure and magnetic features of the samples. Lattice parameters, FWHM, d-spacing, crystallite size, micro strains and volume were investigated using high score plus software. Materials analysis using diffraction (MAUD) software was also used to study the Rietveld refinement properties of the Co doped MgZn ferrites. Physical properties such as porosity, X-ray and bulk density were also determined. Force constants of their respective absorption bands were calculated from FTIR of the Co doped MgZn nanoferrites. Single phase structure with cubic phase were observed for MgZn and Co doped MgZn at x = 0.0 whereas second phase was observed at higher Co concentrations respectively. FESEM show regular shape of the particles at low Co concentrations whereas agglomerations were observed at higher Co concentrations respectively. The magnetic properties of the Co doped MgZn ferrites were also investigated from VSM study. Magnetic remanence, coercivity, initial permeability, saturation magnetization, Bohr magneton and anisotropy constant were determined from VSM analysis. The coercivity, saturation magnetization, remanence, anisotropy constant and initial permeability were enhanced with the doping of ‘Co’ in MgZn nanoferrites. Response of the Co doped MgZn nanoferrites at high frequency regime was also evaluated. It can be seen that the response from all the Co doped MgZn nanoferrites was 2.84 GHz–5.96 GHz respectively and suggested the use of these nanoferrites for the operation of nanodevices in the X-band high frequency regime.  相似文献   
12.
Present study focuses on the development of four layered functionally graded clads (FGC) of Ni-WC based composite material on AISI 304 substrate through microwave heating route. Experimental trials were conducted inside a microwave applicator of domestic type at frequency range of 2.45?GHz. The optimal exposure time of 900?W microwave power was varied with compositional gradient and it was from 300 to 360?s. The mechanism of FGC formation through microwave heating was explained and developed FGC was subjected to mechanical and microstructure characterizations. The results of micro-structural analysis revealed that the FGC of ~1.8?mm thickness was produced and was free from any type of interfacial cracks and visible porosity. It was observed that WC particles were randomly dispersed in the nickel matrix. XRD study revealed the formation of inter-metallics, such as NiW4, NiSi, and Cr23C6. Maximum value of microhardness was observed in the top FGC layer and was 880?±?30?HV.  相似文献   
13.
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.  相似文献   
14.
《Ceramics International》2020,46(5):5649-5657
To establish the relationship between wettability and structure with the change in SAW flux composition, the contact angle measurement study was performed at 1700 K. For MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system the wetting behaviour was studied by evaluating the contact angle as well as surface tension properties. Sessile drop method was used to determine the wetting properties of SAW fluxes. Twenty-one SAW fluxes were designed & developed by applying mixture design approach of design of experiments. Chemical, phase and structural properties of SAW fluxes were measured using modern techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD) & Fourier Transform Infra-red spectroscopy (FTIR). As per the calculated contact angle value, different surface tension values for MgO–TiO2–SiO2 and Al2O3–MgO–SiO2 flux system was calculated using Young's & Boni's equations. Using Dupre's equation the adhesion energy for twenty-one basic fluxes was also calculated. Measured contact angle value increased with increase in the TiO2/MgO & TiO2/Al2O3 flux ratio. Lower contact angle gives higher wettability between the flux and the heating substrate. With increase of TiO2/SiO2 ratio up to 1.5 to 2.0 the calculated surface tension value is decreasing while after that it is increased with increase in TiO2/SiO2 ratio.  相似文献   
15.
16.
ABSTRACT

The residual stress may greatly vary through thickness due to the large temperature gradients and severe plastic deformation in depth for thick section friction stir welded plates. AA 2024-T351 plates with 6.5, 12 and 20?mm thicknesses were joined by friction stir welding to investigate the differences of residual stress variations with depth between thin and thick plates. The surface residual stresses were compared between the X-ray diffraction and contour measurements. Significant variations of stress peaks, root central residual stresses and widths of ‘M’ profiles were observed along the thickness for thick plates. The origins of the aggravated variations with depth were investigated from the temperature gradients and material flow variations through thickness.  相似文献   
17.
《Ceramics International》2020,46(17):26521-26529
Rare earths (Res) doped Mn spinel nanoferrites with nominal composition MnR0.2Fe1·8O4 (REs = Tb, Pr, Ce, Y and Gd) were synthesized using sol gel method. FTIR, XRD and FESEM were employed to evaluate the structure, phase, vibrational bands, morphology, grain size and microstructure respectively. VSM was employed to investigate the magnetic features of the Mn nanoferrite and REs doped Mn nanoferrites. XRD confirmed the single-phase cubic structure of Mn nanoferrite whereas tetragonal phase was observed for all REs doped Mn nanoferrites. Unit cell software was used to determine the structural features such as lattice parameter, cell volume, ‘da’, ‘db’, ‘dc’ and ‘dv’ respectively. FTIR results demonstrated the absorption peaks of Mn and REs doped Mn ferrite at 647-674 cm−1. FESEM results depicted the irregular shapes of the particles with large agglomerations in the prepared samples. The grain size evaluated by LIM (line intercept method) found in the range of 94 to 213 nm respectively. Saturation magnetization was increased from 1.332 to 38.097 emu/g whereas remanence was increased from 1.096 to 25.379 emu/g respectively. In addition, other magnetic parameters such as initial permeability, magnetic anisotropy and magnetic moments were also increased. Moreover, Y–K angles showed significant response with REs doping in Mn ferrites. Furthermore, high frequency response and switching field distribution (SFD) of Mn ferrite and REs doped Mn ferrites were also determined. It is found that Y doped Mn ferrite depicted better high frequency and SFD response as compared to Mn ferrite and REs doped Mn ferrites. The coercivity of all these pure Mn ferrite and rare earth's substituted Mn ferrites (425–246 Oe) was higher as compared to the pure Mn and yttrium substituted Mn ferrite (107–217 Oe. Therefore, it was suggested that Y doped Mn ferrite was more suitable candidate for switching, and high frequency absorption applications in microwave regime.  相似文献   
18.
The influence of neodymium and nickel substitution on structural and dielectric parameters was investigated in strontium-barium X-type hexagonal ferrites having composition SrBaCu2?xNixNdyFe28?yO46 (x = 0, 0.2, 0.4, 0.6, 0.8, 1 and y = 0, 0.02, 0.04, 0.06, 0.08, 0.1). Sol-gel method was employed for synthesizing these hexagonal ferrites. The XRD plots of all studied materials which were annealed at 1250 °C show single phase characteristics. Lattice parameter ‘c’ increased as a consequence of larger radius of rare earth ion (Nd3+) as compared to (Fe3+), while lattice parameter ‘a’ showed very small variation. The cell volume was obtained in the range 2508.32–2523.75 (Å3). The inclusion of Nd-Ni also affected X-ray density, bulk density and porosity. The FTIR spectroscopy indicated the particular absorption peaks of hexagonal ferrites and it was performed in the range of 500–700 cm?1. On account of Nd-Ni doping, the dielectric constant, dielectric loss and AC-conductivity showed decreasing trend. The occupancy of Nd3+ ions at octahedral site impedes the valence alternation of Fe3+; therefore there was decrease in dielectric permittivity. Ac conductivity has been decreased from 9.14 to 6.49 (Ω cm)?1 at frequency of 2.7 GHz. The Cole-Cole plots of synthesized materials noticeably revealed grain boundary contribution. The appearance of single semi-circle in impedance Cole-Cole graphs confirms the exceptional role of grain boundaries in the conduction process. The considerably lower dielectric parameters of investigated nano X-type ferrites propose their feasibility for high-frequency applications (phase shifters, dielectric resonators, stealth technology etc).  相似文献   
19.
Up to now, commercially available alumina ceramics were claimed to have strength between 400 and 550 MPa. However, our study shows strength ~ 2 times higher for commercially available alumina than commonly believed. The average and characteristic strength, measured on 31 pure alumina ceramic discs by ball on three balls (B3B) test, were 1205 ± 93 MPa and 1257 MPa, respectively, with a Weibull modulus of m = 11.8. Tested specimens were in form of discs with a diameter of 5 mm and thickness 0.5 mm. The grain size distribution of the alumina is bimodal with an average grain size of ~ 850 nm measured at the surface. The fracture reveals a mixed transgranular / intergranular failure mode. To avoid incorporation of additional flaws, the discs were tested as sintered. The characteristic flexural strength measured in B3B was recalculated according to Weibull theory for standard 4-point bending bars of size 3 × 4 × 45 mm as bend 856 MPa. The measured strength of nearly 900 MPa shows the potential of strength for high purity alumina ceramics.  相似文献   
20.
A novel mullite-bonded SiC-whisker-reinforced SiC matrix composite (SiCw/SiC, SiC whisker-to-SiC powder mass ratio of 1:9) was designed and successfully prepared. Before preparing the composite, the inexpensive lab-made SiCw was first modified by an oxidation/leaching process and then coated with Al2O3. The kinetics results indicate that the oxidation process can be described by improved shrinking-cylinder models. The aspect ratio of SiCw improved after modification. Subsequently, raw materials with a SiC–SiO2–Al2O3 triple-layered structure were obtained after the Al2O3-coating process and used as feedstocks during the subsequent hot-pressing sintering. Finally, the characterization of the composites indicates that the mullite-bonded sample performs better (relative density of 93.8?±?1.4%, flexural strength of 533.3?±?18.2?MPa, fracture toughness of 13.6?±?2.1?MPa?m1/2, and Vickers hardness of 20.6?±?2.5?GPa) than the reference sample without the mullite interface. The improved toughness could essentially be attributed to the moderately strong interface bonding and effective load transfer effects of the mullite interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号